Vikipedi, özgür ansiklopedi
Bu madde, Vikipedi'deki Matematik maddelerini geliştirmek amacıyla oluşturulan Vikiproje Matematik kapsamındadır. Eğer projeye katılmak isterseniz, bu sayfaya bağlı değişiklikler yapabilir veya katılabileceğiniz ve tartışabileceğiniz proje sayfasını ziyaret edebilirsiniz.
Taslak
Bu madde Taslak-sınıf olarak değerlendirilmiştir.
Orta
Bu madde Orta-önemli olarak değerlendirilmiştir.
t
⊢
f
:
X
f
↦
Y
f
∧
X
f
×
Y
f
⊆
R
2
∧
g
:
X
g
↦
Y
g
∧
X
g
×
Y
g
⊆
R
2
∧
a
∈
X
f
∩
X
g
∧
{\displaystyle ~t\vdash \quad \mathrm {f} :\mathbb {X} _{\mathrm {f} }\mapsto \mathbb {Y} _{\mathrm {f} }\ \ \land \ \ \mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }\subseteq \mathbb {R} ^{2}\quad \land \quad \mathrm {g} :\mathbb {X} _{\mathrm {g} }\mapsto \mathbb {Y} _{\mathrm {g} }\ \ \land \ \ \mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }\subseteq \mathbb {R} ^{2}\quad \land \quad a\in \mathbb {X} _{\mathrm {f} }\ \cap \ \mathbb {X} _{\mathrm {g} }\quad \land }
lim
x
→
a
f
(
x
)
=
lim
x
→
a
g
(
x
)
∧
{
lim
x
→
a
f
(
x
)
,
lim
x
→
a
g
(
x
)
}
⊆
{
{
−
∞
}
,
{
0
}
,
{
∞
}
}
∧
{\displaystyle ~\lim _{x\to a}f(x)=\lim _{x\to a}g(x)\quad \land \quad \{\lim _{x\to a}f(x),\ \ \lim _{x\to a}g(x)\}\ \subseteq \ \{\{-\infty \},\ \{0\},\ \{\infty \}\}\quad \land }
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
f
∩
X
g
∧
0
<
|
x
−
a
|
<
δ
(
f
′
(
x
)
∈
R
∧
g
′
(
x
)
∈
R
∖
{
0
}
)
→
{\displaystyle ~\exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {f} }\ \cap \ \mathbb {X} _{\mathrm {g} }\ \land \ 0\ <\ |x-a|\ <\ \delta }\ (f'(x)\in \mathbb {R} \ \ \land \ \ g'(x)\in \mathbb {R} \setminus \{0\}\ )\quad \to }
(
∃
L
∈
R
(
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
=
L
)
→
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
)
{\displaystyle ~(\ \exists _{L\ \in \ \mathbb {R} }\ (\lim _{x\to a}{\frac {f'(x)}{g'(x)}}=L)\quad \to \quad \lim _{x\to a}{\frac {f(x)}{g(x)}}=\lim _{x\to a}{\frac {f'(x)}{g'(x)}}\ )}
Notes
f
:
X
f
↦
Y
f
⇔
f
=
{
⟨
x
,
y
⟩
|
⟨
x
,
y
⟩
∈
X
f
×
Y
f
∧
y
=
f
(
x
)
}
{\displaystyle ~\mathrm {f} :\mathbb {X} _{\mathrm {f} }\mapsto \mathbb {Y} _{\mathrm {f} }\quad \Leftrightarrow \quad \mathrm {f} =\{\langle x,y\rangle |\quad \langle x,y\rangle \in \mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }\quad \land \quad y=f(x)\ \}}
⊢
X
f
×
Y
f
=
{
⟨
x
,
y
⟩
|
x
∈
X
f
∧
y
∈
Y
f
}
{\displaystyle ~\vdash \quad \mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }=\{\langle x,y\rangle |\quad x\in \mathbb {X} _{\mathrm {f} }\quad \land \quad y\in \mathbb {Y} _{\mathrm {f} }\ \}}
X
f
×
Y
f
⊆
R
2
⇔
∀
x
∀
y
(
⟨
x
,
y
⟩
∈
X
f
×
Y
f
→
⟨
x
,
y
⟩
∈
R
2
)
{\displaystyle ~\mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }\subseteq \mathbb {R} ^{2}\quad \Leftrightarrow \quad \forall x\forall y\ (\ \langle x,y\rangle \in \mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }\ \to \ \langle x,y\rangle \in \mathbb {R} ^{2}\ )}
g
:
X
g
↦
Y
g
⇔
g
=
{
⟨
x
,
y
⟩
|
⟨
x
,
y
⟩
∈
X
g
×
Y
g
∧
y
=
g
(
x
)
}
{\displaystyle ~\mathrm {g} :\mathbb {X} _{\mathrm {g} }\mapsto \mathbb {Y} _{\mathrm {g} }\quad \Leftrightarrow \quad \mathrm {g} =\{\langle x,y\rangle |\quad \langle x,y\rangle \in \mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }\quad \land \quad y=g(x)\ \}}
⊢
X
g
×
Y
g
=
{
⟨
x
,
y
⟩
|
x
∈
X
g
∧
y
∈
Y
g
}
{\displaystyle ~\vdash \quad \mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }=\{\langle x,y\rangle |\quad x\in \mathbb {X} _{\mathrm {g} }\quad \land \quad y\in \mathbb {Y} _{\mathrm {g} }\ \}}
X
g
×
Y
g
⊆
R
2
⇔
∀
x
∀
y
(
⟨
x
,
y
⟩
∈
X
g
×
Y
g
→
⟨
x
,
y
⟩
∈
R
2
)
{\displaystyle ~\mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }\subseteq \mathbb {R} ^{2}\quad \Leftrightarrow \quad \forall x\forall y\ (\ \langle x,y\rangle \in \mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }\ \to \ \langle x,y\rangle \in \mathbb {R} ^{2}\ )}
a
∈
X
f
∩
X
g
⇔
a
∈
X
f
∧
a
∈
X
g
{\displaystyle ~a\in \mathbb {X} _{\mathrm {f} }\cap \mathbb {X} _{\mathrm {g} }\quad \Leftrightarrow \quad a\in \mathbb {X} _{\mathrm {f} }\ \ \land \ \ a\in \mathbb {X} _{\mathrm {g} }}
⊢
X
f
∩
X
g
=
{
x
|
x
∈
X
f
∧
x
∈
X
g
}
{\displaystyle ~\vdash \quad \mathbb {X} _{\mathrm {f} }\cap \mathbb {X} _{\mathrm {g} }=\{x|\quad x\in \mathbb {X} _{\mathrm {f} }\quad \land \quad x\in \mathbb {X} _{\mathrm {g} }\ \}}
lim
x
→
a
f
(
x
)
=
−
∞
⇔
∀
m
∈
(
−
∞
,
0
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
f
(
0
<
|
x
−
a
|
<
δ
→
f
(
x
)
<
m
)
{\displaystyle ~\lim _{x\to a}f(x)=-\infty \quad \Leftrightarrow \quad \forall _{m\ \in \ (-\infty ,\ 0)}\exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {f} }}\ (0<|x-a|<\delta \ \to \ f(x)<m)}
lim
x
→
a
g
(
x
)
=
−
∞
⇔
∀
m
∈
(
−
∞
,
0
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
g
(
0
<
|
x
−
a
|
<
δ
→
g
(
x
)
<
m
)
{\displaystyle ~\lim _{x\to a}g(x)=-\infty \quad \Leftrightarrow \quad \forall _{m\ \in \ (-\infty ,\ 0)}\ \exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {g} }}\ (0<|x-a|<\delta \ \to \ g(x)<m)}
lim
x
→
a
f
(
x
)
=
0
⇔
∀
ε
∈
(
0
,
∞
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
f
(
0
<
|
x
−
a
|
<
δ
→
|
f
(
x
)
|
<
ε
)
{\displaystyle ~\lim _{x\to a}f(x)=0\quad \Leftrightarrow \quad \forall _{\varepsilon \ \in \ (0,\ \infty )}\ \exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {f} }}\ (0<|x-a|<\delta \ \to \ |f(x)|<\varepsilon )}
lim
x
→
a
g
(
x
)
=
0
⇔
∀
ε
∈
(
0
,
∞
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
g
(
0
<
|
x
−
a
|
<
δ
→
|
g
(
x
)
|
<
ε
)
{\displaystyle ~\lim _{x\to a}g(x)=0\quad \Leftrightarrow \quad \forall _{\varepsilon \ \in \ (0,\ \infty )}\ \exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {g} }}\ (0<|x-a|<\delta \ \to \ |g(x)|<\varepsilon )}
lim
x
→
a
f
(
x
)
=
∞
⇔
∀
M
∈
(
0
,
∞
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
f
(
0
<
|
x
−
a
|
<
δ
→
f
(
x
)
>
M
)
{\displaystyle ~\lim _{x\to a}f(x)=\infty \quad \Leftrightarrow \quad \forall _{M\ \in \ (0,\ \infty )}\ \exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {f} }}\ (0<|x-a|<\delta \ \to \ f(x)>M)}
lim
x
→
a
g
(
x
)
=
∞
⇔
∀
M
∈
(
0
,
∞
)
∃
δ
∈
(
0
,
∞
)
∀
x
∈
X
g
(
0
<
|
x
−
a
|
<
δ
→
g
(
x
)
>
M
)
{\displaystyle ~\lim _{x\to a}g(x)=\infty \quad \Leftrightarrow \quad \forall _{M\ \in \ (0,\ \infty )}\ \exists _{\delta \ \in \ (0,\ \infty )}\ \forall _{x\ \in \ \mathbb {X} _{\mathrm {g} }}\ (0<|x-a|<\delta \ \to \ g(x)>M)}
⊢
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
{\displaystyle ~\vdash \quad f'(x)=\lim _{h\to 0}{\frac {f(x+h)-f(x)}{h}}}
f
′
(
x
)
∈
R
⇔
∃
y
(
y
∈
R
∧
y
=
f
′
(
x
)
)
⇔
∃
y
∈
R
(
y
=
f
′
(
x
)
)
{\displaystyle ~f'(x)\in \mathbb {R} \quad \Leftrightarrow \quad \exists y\ (y\in \mathbb {R} \ \ \land \ \ y=f'(x)\ )\quad \Leftrightarrow \quad \exists _{y\ \in \ \mathbb {R} }\ (y=f'(x))}
⊢
g
′
(
x
)
=
lim
h
→
0
g
(
x
+
h
)
−
g
(
x
)
h
{\displaystyle ~\vdash \quad g'(x)=\lim _{h\to 0}{\frac {g(x+h)-g(x)}{h}}}
g
′
(
x
)
∈
R
∖
{
0
}
⇔
g
′
(
x
)
∈
R
∧
g
′
(
x
)
∉
{
0
}
⇔
g
′
(
x
)
∈
R
∧
g
′
(
x
)
≠
0
{\displaystyle ~g'(x)\in \mathbb {R} \setminus \{0\}\quad \Leftrightarrow \quad g'(x)\in \mathbb {R} \ \ \land \ \ g'(x)\notin \{0\}\quad \Leftrightarrow \quad g'(x)\in \mathbb {R} \ \ \land \ \ g'(x)\neq 0}
∃
L
∈
R
(
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
=
L
)
⇔
∃
L
(
L
∈
R
∧
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
=
L
)
⇔
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
∈
R
{\displaystyle ~\exists _{L\ \in \ \mathbb {R} }\ (\lim _{x\to a}{\frac {f'(x)}{g'(x)}}=L)\quad \Leftrightarrow \quad \exists L\ (\ L\in \mathbb {R} \ \ \land \ \ \lim _{x\to a}{\frac {f'(x)}{g'(x)}}=L\ )\quad \Leftrightarrow \quad \lim _{x\to a}{\frac {f'(x)}{g'(x)}}\in \mathbb {R} }
t
⊢
f
:
X
f
↦
Y
f
∧
X
f
×
Y
f
⊆
R
2
∧
g
:
X
g
↦
Y
g
∧
X
g
×
Y
g
⊆
R
∧
{\displaystyle ~t\vdash \quad \mathrm {f} :\mathbb {X} _{\mathrm {f} }\mapsto \mathbb {Y} _{\mathrm {f} }\quad \land \quad \mathbb {X} _{\mathrm {f} }\ \times \ \mathbb {Y} _{\mathrm {f} }\subseteq \mathbb {R} ^{2}\quad \land \quad \mathrm {g} :\mathbb {X} _{\mathrm {g} }\mapsto \mathbb {Y} _{\mathrm {g} }\quad \land \quad \mathbb {X} _{\mathrm {g} }\ \times \ \mathbb {Y} _{\mathrm {g} }\subseteq \mathbb {R} \quad \land }
∃
a
f
∃
a
g
(
{
a
f
,
a
g
}
⊆
R
∧
(
a
f
,
∞
)
⊆
X
f
∧
(
a
g
,
∞
)
⊆
X
g
∧
{\displaystyle ~\exists a_{\mathrm {f} }\exists a_{\mathrm {g} }\ (\ \{a_{\mathrm {f} },\ a_{\mathrm {g} }\}\subseteq \mathbb {R} \quad \land \quad (a_{\mathrm {f} },\ \infty )\subseteq \mathbb {X} _{\mathrm {f} }\quad \land \quad (a_{\mathrm {g} },\ \infty )\subseteq \mathbb {X} _{\mathrm {g} }\quad \land }
lim
x
→
∞
f
(
x
)
=
lim
x
→
∞
g
(
x
)
∧
{
lim
x
→
∞
f
(
x
)
,
lim
x
→
∞
g
(
x
)
}
⊆
{
{
−
∞
}
,
{
0
}
,
{
∞
}
}
∧
{\displaystyle ~\lim _{x\to \infty }f(x)=\lim _{x\to \infty }g(x)\quad \land \quad \{\lim _{x\to \infty }f(x),\ \ \lim _{x\to \infty }g(x)\}\ \subseteq \ \{\{-\infty \},\ \{0\},\ \{\infty \}\}\quad \land }
∃
a
∈
R
∧
a
≥
m
a
x
(
a
f
,
a
g
)
∀
x
∈
(
a
,
∞
)
(
f
′
(
x
)
∈
R
∧
g
′
(
x
)
∈
R
∖
{
0
}
)
∧
lim
x
→
∞
f
′
(
x
)
g
′
(
x
)
∈
R
)
→
{\displaystyle ~\exists _{a\ \in \ \mathbb {R} \ \land \ a\ \geq \ max(a_{\mathrm {f} },a_{\mathrm {g} })}\ \forall _{x\ \in \ (a,\infty )}\ (f'(x)\in \mathbb {R} \ \land \ g'(x)\in \mathbb {R} \setminus \{0\})\quad \land \quad \lim _{x\to \infty }{\frac {f'(x)}{g'(x)}}\in \mathbb {R} )\quad \to }
→
lim
x
→
∞
f
(
x
)
g
(
x
)
=
lim
x
→
∞
f
′
(
x
)
g
′
(
x
)
{\displaystyle ~\to \quad \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=\lim _{x\to \infty }{\frac {f'(x)}{g'(x)}}}
Notes
{
a
f
,
a
g
}
⊆
R
⇔
a
f
∈
R
∧
a
g
∈
R
{\displaystyle ~\{a_{\mathrm {f} },\ a_{\mathrm {g} }\}\subseteq \mathbb {R} \quad \Leftrightarrow \quad a_{\mathrm {f} }\in \mathbb {R} \ \ \land \ \ a_{\mathrm {g} }\in \mathbb {R} }
⊢
(
a
f
,
∞
)
=
{
x
|
x
∈
R
∧
x
>
a
f
}
{\displaystyle ~\vdash \quad (a_{\mathrm {f} },\ \infty )\ =\ \{x|\quad x\in \mathbb {R} \quad \land \quad x>a_{\mathrm {f} }\ \}}
(
a
f
,
∞
)
⊆
X
f
⇔
∀
x
(
x
∈
(
a
f
,
∞
)
→
x
∈
X
f
)
{\displaystyle ~(a_{\mathrm {f} },\ \infty )\subseteq \mathbb {X} _{\mathrm {f} }\quad \Leftrightarrow \quad \forall x\ (x\in (a_{\mathrm {f} },\ \infty )\ \to \ x\in \mathbb {X} _{\mathrm {f} })}
⊢
(
a
g
,
∞
)
=
{
x
|
x
∈
R
∧
x
>
a
g
}
{\displaystyle ~\vdash \quad (a_{\mathrm {g} },\ \infty )\ =\ \{x|\quad x\in \mathbb {R} \quad \land \quad x>a_{\mathrm {g} }\ \}}
(
a
g
,
∞
)
⊆
X
g
⇔
∀
x
(
x
∈
(
a
g
,
∞
)
→
x
∈
X
g
)
{\displaystyle ~(a_{\mathrm {g} },\ \infty )\subseteq \mathbb {X} _{\mathrm {g} }\quad \Leftrightarrow \quad \forall x\ (x\in (a_{\mathrm {g} },\ \infty )\ \to \ x\in \mathbb {X} _{\mathrm {g} })}
a
≥
m
a
x
(
a
f
,
a
g
)
⇔
a
≥
1
2
⋅
(
a
f
+
a
g
+
|
a
f
−
a
g
|
)
{\displaystyle ~a\ \geq \ max(a_{\mathrm {f} },a_{\mathrm {g} })\quad \Leftrightarrow \quad a\ \geq \ {\frac {1}{2}}\cdot (a_{\mathrm {f} }+a_{\mathrm {g} }+|a_{\mathrm {f} }-a_{\mathrm {g} }|)}
t
⊢
f
:
X
f
↦
Y
f
∧
X
f
×
Y
f
⊆
R
2
∧
g
:
X
g
↦
Y
g
∧
X
g
×
Y
g
⊆
R
2
∧
{\displaystyle ~t\vdash \quad \mathrm {f} :\mathbb {X} _{\mathrm {f} }\mapsto \mathbb {Y} _{\mathrm {f} }\quad \land \quad \mathbb {X} _{\mathrm {f} }\times \mathbb {Y} _{\mathrm {f} }\subseteq \mathbb {R} ^{2}\quad \land \quad \mathrm {g} :\mathbb {X} _{\mathrm {g} }\mapsto \mathbb {Y} _{\mathrm {g} }\quad \land \quad \mathbb {X} _{\mathrm {g} }\times \mathbb {Y} _{\mathrm {g} }\subseteq \mathbb {R} ^{2}\quad \land }
∃
a
f
∃
a
g
(
{
a
f
,
a
g
}
⊆
R
∧
(
−
∞
,
a
f
)
⊆
X
f
∧
(
−
∞
,
a
g
)
⊆
X
g
∧
{\displaystyle ~\exists a_{\mathrm {f} }\exists a_{\mathrm {g} }\ (\ \{a_{\mathrm {f} },\ a_{\mathrm {g} }\}\subseteq \mathbb {R} \quad \land \quad (-\infty ,\ a_{\mathrm {f} })\subseteq \mathbb {X} _{\mathrm {f} }\quad \land \quad (-\infty ,\ a_{\mathrm {g} })\subseteq \mathbb {X} _{\mathrm {g} }\quad \land }
lim
x
→
−
∞
f
(
x
)
=
lim
x
→
−
∞
g
(
x
)
∧
{
lim
x
→
−
∞
f
(
x
)
,
lim
x
→
−
∞
g
(
x
)
}
⊆
{
{
−
∞
}
,
{
0
}
,
{
∞
}
}
∧
{\displaystyle ~\lim _{x\to -\infty }f(x)=\lim _{x\to -\infty }g(x)\ \ \land \ \ \{\lim _{x\to -\infty }f(x),\ \ \lim _{x\to -\infty }g(x)\}\ \subseteq \ \{\{-\infty \},\ \{0\},\ \{\infty \}\}\ \ \land }
∃
a
∈
R
∧
a
≤
m
i
n
(
a
f
,
a
g
)
∀
x
∈
(
−
∞
,
a
)
(
f
′
(
x
)
∈
R
∧
g
′
(
x
)
∈
R
∖
{
0
}
)
∧
lim
x
→
−
∞
f
′
(
x
)
g
′
(
x
)
∈
R
)
{\displaystyle ~\exists _{a\ \in \ \mathbb {R} \ \land \ a\ \leq \ min(a_{\mathrm {f} },a_{\mathrm {g} })}\ \forall _{x\ \in \ (-\infty ,a)}\ (f'(x)\in \mathbb {R} \ \land \ g'(x)\in \mathbb {R} \setminus \{0\})\ \ \land \ \ \lim _{x\to -\infty }{\frac {f'(x)}{g'(x)}}\in \mathbb {R} )}
→
lim
x
→
−
∞
f
(
x
)
g
(
x
)
=
lim
x
→
−
∞
f
′
(
x
)
g
′
(
x
)
{\displaystyle ~\to \quad \lim _{x\to -\infty }{\frac {f(x)}{g(x)}}=\lim _{x\to -\infty }{\frac {f'(x)}{g'(x)}}}
Notes
⊢
(
−
∞
,
a
f
)
=
{
x
|
x
∈
R
∧
x
<
a
f
}
{\displaystyle ~\vdash \quad (-\infty ,\ a_{\mathrm {f} })\ =\ \{x|\quad x\in \mathbb {R} \quad \land \quad x<a_{\mathrm {f} }\ \}}
(
−
∞
,
a
f
)
⊆
X
f
⇔
∀
x
(
x
∈
(
−
∞
,
a
f
)
→
x
∈
X
f
)
⇔
∀
x
∈
(
−
∞
,
a
f
)
(
x
∈
X
f
)
{\displaystyle ~(-\infty ,\ a_{\mathrm {f} })\subseteq \mathbb {X} _{\mathrm {f} }\quad \Leftrightarrow \quad \forall x\ (x\in (-\infty ,\ a_{\mathrm {f} })\ \to \ x\in \mathbb {X} _{\mathrm {f} })\quad \Leftrightarrow \quad \forall _{x\ \in \ (-\infty ,\ a_{\mathrm {f} })}\ (x\in \mathbb {X} _{\mathrm {f} })}
⊢
(
−
∞
,
a
g
)
=
{
x
|
x
∈
R
∧
x
<
a
g
}
{\displaystyle ~\vdash \quad (-\infty ,\ a_{\mathrm {g} })\ =\ \{x|\quad x\in \mathbb {R} \quad \land \quad x<a_{\mathrm {g} }\ \}}
(
−
∞
,
a
g
)
⊆
X
g
⇔
∀
x
(
x
∈
(
−
∞
,
a
g
)
→
x
∈
X
g
)
⇔
∀
x
∈
(
−
∞
,
a
g
)
(
x
∈
X
g
)
{\displaystyle ~(-\infty ,\ a_{\mathrm {g} })\subseteq \mathbb {X} _{\mathrm {g} }\quad \Leftrightarrow \quad \forall x\ (x\in (-\infty ,\ a_{\mathrm {g} })\ \to \ x\in \mathbb {X} _{\mathrm {g} })\quad \Leftrightarrow \quad \forall _{x\ \in \ (-\infty ,\ a_{g})}\ (x\in \mathbb {X} _{\mathrm {g} })}
a
≤
m
i
n
(
a
f
,
a
g
)
⇔
a
≤
1
2
⋅
(
a
f
+
a
g
−
|
a
f
−
a
g
|
)
{\displaystyle ~a\ \leq \ min(a_{\mathrm {f} },a_{\mathrm {g} })\quad \Leftrightarrow \quad a\ \leq \ {\frac {1}{2}}\cdot (a_{\mathrm {f} }+a_{\mathrm {g} }-|a_{\mathrm {f} }-a_{\mathrm {g} }|)}